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The unified algebraic approach to the phase problem yields, under suitable circumstances, explicit 
formulas for the magnitudes of certain structure invariants. These lead to a procedure for phase 
determination in the space group P1. Least-squares adjustments for refining the phases so deter- 
mined are also described. Some simple examples are given which illustrate the application of the 
procedure. 

1. I n t r o d u c t i o n  

The unified algebraic method described in a previous 
paper (Hauptman & Karle, 1957) hereafter referred 
to as I, is here appLied to space group P1. Formulas 
which lead to a procedure for phase determination are 
thus obtained. The relationship between this approach 
and that  of the joint probability distributions pre- 
viously described (Hauptman & Karle, 1953) will be 
studied in subsequent papers. 

Although, as in I, the algebraic approach yields 
formulas having exact validity only in the case that  
the structure consist of N identical point atoms, this 
restriction can be readily removed. In fact the joint 
probability distribution plays an important role in 
modifying the formulas in the case that  the structure 
contains unequal atoms. However, in this paper we 
treat only the case of N identical point atoms so that  
the method and formulas appear in their simplest 
forms. I t  is to be emphasized that in this case the 
formulas have exact, not merely probable, validity. 
As in I, the restriction that no six atoms be rationally 
dependent is required for our formulas to be rigorously 
true. However, it will be apparent that  the procedure 
to be described is ordinarily not limited by this re- 
quirement. 

Since the magnitudes of the structure factors deter- 
mine only the magnitudes of the structure invariants 
(Hauptman & Karle, 1956, Main Theorem 7.3) the 
fundamental formula relates the magnitude of a 
particular structure invariant to the observed inten- 
sities. In space group P1 no single phase is a structure 
invariant. Hence an important problem to be con- 
sidered in this paper is the evaluation of single phases 
when only the magnitudes of certain structure in- 
variants are known. To this end a simple but important 
identity will be employed. 

2. P h a s e - d e t e r m i n i n g  f o r m u l a s  

We List here all formulas which are derived in this 
paper. 

[Eh]~--i ---- N((iEk[2--1)(IEh_kle--1)~>k. (2"1) 

E h l E h 2  --  N ~ ( ] E k [  2 -  l)Ehl+kEh2_k~k÷ ( 1 / / ~ ½ ) E h l + h  2 • 
(2.1a) 

]Ehl Eh~ Eh3J COS (~1 + ~2 + ~%) 

= (N~/2)((IEk[ 2-1) (IEh,÷kl 2-1) ([Eh,+h~+kl 2-1))k 

+ (1/N½)([Ehli~+]Eh~12+lEh3]2--2), 

h ' = h  1 or he, h l + h 2 + h  a = 0 .  (2.2) 

[EhiEb2Eh3] cos (~1+~2+~3) 

= 2N~([EkEk,Ew, Eh~_kEh~_wEh3_k,, I 

X COS ( ( ~ k ÷ ~ k ' ÷ ~ k " )  

)< COS ((~hl_k÷0Ph2_k,÷(Ph3_k,,)~)k, k', k " - 2 A t ½  , 

h l + h 2 + h  a = k + k ' + k "  = 0 .  

E h : .N½(EkEh_k~)  k . 

(IEkl2~>k = 1 ,  

(2.3) 

(2.4) 

(2.5) 

In these equations the ~'s are the phases of the 
corresponding E's, the normalized structure factors. 
Of these formulas, (2.4) has been previously derived 
by Hughes (1953) and (2.1) by Hauptman & Karle 
(1955). Evidently (2.5) is the special case h = 0 of 
(2.4). The remaining equations are new, although 
Vaughan (1956) has obtained, by means of the Patter- 
son superposition method, an approximate formula 
which resembles (2.2). I t  should be noted that  (2.3) 
and (2.4) are supplementary formulas in the sense 
that (2.3) gives an improved value for the magnitude 
of a structure invariant once the approximate values 
of a large number of structure invariant magnitudes 
are known, while (2-4) gives an improved value for 
a phase once the approximate values of a large 
number of phases are known. Although (2-3) and (2.4) 
are rigorously correct it must be emphasized that, as 
a practical matter, they are not likely to be useful in 
any scheme for phase determination except possibly 
in the very final stages. The reason for this lies in the 
fact that initially (2.2) can be expected to yield reliable 
values for the magnitudes of those structure invariants 
~ 1 + ~ + ~ 3  corresponding to the larger products 
IE1E2E31. Hence the required averages in (2.3) and 
(2.4) can be carried out not over all vectors k, k', k"  
(as required by (2-3) and (2.4)), but rather over only 
such vectors for which the corresponding ]Ek['S are 
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large. However,  it  can be shown (Karle & Haup tman ,  
1956) t ha t  in this case (2.3) and (2.4) may  be re- 
placed by 

]EfilEh2Eha [ COS ((~l-~-(p2-~-(~3) 
.q 

2N~ < ]EkEk, Ek,, Ehl_k Eh~_k, Eh3_k~ ] 
X c o s  ( (pk-~-(~k,~-(~k, , )  COS (~)hl_k'~-~h2_k,~-~h3_k,,)>k,k,,k,, 

< [EkEk'Ek"Ehl-kEh2-k'Ehs- k" [2>k, k ' ,  k" 

- 2 N ½ ,  h l + h 2 + h  3 -- k + k ' + k "  = 0 ,  (2.3a) 

/~½ < E k E h - k > k  (2 .4a)  
Eh ~ ([EkWh_kl2>k • 

Equat ion  (2.3a) still has the disadvantage tha t  it 
requires enormous computing facilities. In  this paper 
we shall present a least-squares procedure which 
yields formulas tha t  appear to supersede (2.3), (2.3a), 
(2.4), and (2.4a). This least-squares approach is par- 
t icularly valuable since it is equally applicable to the 
case tha t  the s t ructure contains unequal atoms. 

3. A n a l y s i s  

3"1. The preliminary formulas 
We star t  with the definition of the normalized 

s tructure factor Eh* (Karle & Hauptman ,  1956, 
equation (3-12)). For space group P1 with N identical 
point  atoms per unit  cell, this reduces to 

1 .v 
= __~ exp (2~ih.  ri) , (3.01) Eh ~-~ J=x 

where r] is the position vector of the j t h  atom. Equa- 
tion (3.01) is the case q = 1 of the more general defini- 
tion~ 

1 .v q 
E h l h 2 " " h q  -- .~q,.'2 ~ / /  e x p  ( 2 ~ i h i . r j )  . (3-02) 

/1~:12~1" • • ~}q i = l  

Employing (3.01) to compute EhtEh2 and Eh~Eh~Eh:p 
we readily derive in tu rn  the two prel iminary formulas 

1 
Ehzh.,  ----- E h t E h 2 - -  ~ E h l + h  ~ , (3"03) 

Ehzh2h. ~ : EhlEh2Eh3 
- (1/N½) (Ehl+h~Eh3+Ehl+haEh2+Eh2+haEhl) 
+ (2//~)Ehl.i_h2+h 3 . (3"04) 

3'2. The final formulas 
Equat ion  (2.4) is an immediate  consequence of 

(3.03). In  (3.03) we make the subst i tut ions 

* In  pract ice  Eh  is ob ta ined  f rom F h  by means  of 

where  F h  is the  crystal  s t ruc tu re  factor  and  f ib  is the  a tomic  
sca t te r ing  factor.  

~f This  def ini t ion and  the  following analysis  are similar  to 
those a l ready descr ibed in I. 

h 1 -+ k, h 2 -+ h - k  (3"05) 

and average both sides of (3.03) over k. From (3.02), 

<Ek(h_k)>k --~ 0 ,  (3"06) 

and solving (3.03) for Eh yields (2.4). 
In  order to prove (2.1) we compute 

H Eh i 
i = l  

from (3.01) as follows" 

4 1 _v 
[ / E h i  = N--- ~ --Y' 
i = z  h / , / ' , / "  

1 

× exp [2Jti(h z . r i + h  2 . r j , + h  3 . r y ,+h  4. r/,,)] (3.07) 

= RI+R2+R'.,.+R3+R4, (3.08) 

where 

.Y 

1 2 e x p  [2~ i (h l+h~ .+h3+h4) . r i ] ,  (3-09) Rt = ~  j=l 

1 .v 
R~ = N-- ~ _~ {exp (2:~i[(h l + h 2 + h 3 ) . r j + h 4 . r Y ]  ) 

J*/ 
z +3 similar te rms} ,  (3.10) 
.V 

, 1 _~ {exp (2~ i [ (h t+h2 ) . r~+ (h3+h4) . r r ] )  R~ = N--: 2 J*/ 
1 +2  similar te rms},  (3-11) 

1 .v 
R3 = ~ 2 { e x p ( 2 g i [ ( h l + h 2 ) . r ~ + h 3 . r z + h 4 . r r ] )  

j#j'4:j'" 
1 -~-5 similar te rms} ,  (3.12) 

1 .v 
R 4 = ~ _~ exp [2~ i (h l . r~+h~ . r  r 

j#/~_f,~j,, ,  
1 + h 3 .  r j , + h 4 ,  r j , , , ) ] .  (3-13) 

Next  we specialize (3.08) by means of the substi tu- 
tions 

h 1-->k, h 2 - + - k ,  h a - + h - k ,  h a - - > - h + k ,  (3.14)  

and average both sides over all vectors k. By imposing 
the condition tha t  no four different vectors 
r;, rj,, r r,, r r -  be rat ionally dependent*,  i.e. t ha t  
there do not  exist four integers mi, i = 1, 2, 3, 4, not  
all zero, such tha t  

miri+m2rj,-t-marf,+m4r~ . . . .  r, j 4= j '  4= j "  4= j " '  , 
(3-15) 

where the three components of r are integers, it is 
readily verified tha t  

<R2>k = (R3>k = ( R ~ k  = 0 .  (3 .16)  

Furthermore,  it  is easily seen t ha t  

* This  condi t ion  m a y  be replaced by  the  less s t r ingen t  
r equ i remen t  t h a t  there  do no t  exist  two  integers m p  m2, no t  
bo th  zero, such t h a t  m l r j +  m 2 r / -  (m 1 + m 2 ) r / , = r ,  j 4=j '  4=j"  
where  the  three  componen t s  of r are integers;  and  t h a t  no 
two in te ra tomic  vectors  be ra t ional ly  dependen t .  
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(3.17) 

and 
, I ( N - 1 )  1 N 

<Re> k _ -N ~ + ~ ~ exp [2nih.  ( r j - r j , ) ] .  (3.18) 
~=/, 

1 

Substituting from (3.16)-(3.18) into (3.07) and making 
use of (3.03) we find 

<lEklelEh_kle>k = I+(1/_N)([Eh[2-1).  (3.19) 

Employing (2.5), we immediately deduce (2.1). 
Evidently (2.1) is the special case h~ = - h 2  of 

(2. la). We omit the proof of the latter since it parallels 
closely tha t  of (2.1). 

The proof of (2.2) follows the same lines as tha t  of 
(2.1). From (3.01) 

1-71 Ehi  = .N'---- ~ . ~  exp [2zd (h i . rj + h 2 • rj, 
i=1 h ~", J", f", ~'"', ~ ..... 

1 
+ha.r~,+ha.r~,, ,+h5.r~,, , ,+he.r~ ..... )] (3.20) 

= R~+Re+Re+R ~ +R3+Ra+Ra +R,  (3-21) 
where 

1 
R 1 : ~-~ ~ exp [2y~i (h l÷h2÷ha÷ha÷hs÷h6)  • r i ] ,  

(3.22) 
1 iv 

R e = ~ ~ {exp (2:r i [ (h~+h~+h3+ha+ha) .  r1+he, ri,]) 

+5  similar terms},  (3.23) 

1 
R.~ = ~-~ ~ {exp (2~ i [ (h t+h~+ha+ha) . r i  

j#i" + (hs+h6). rf]) + 14 similar terms},  
(3.24) 1 iv 

R.~'= - -  ~ {exp (2~i[(hl+h2+h3) . r~ 
N3 i#~' 

+ (ha+hs+h6) . r ) , ] )+9 similar terms},  

1 ~ (3.25) 
R 3 _ N 3 ~ {exp (2~i [(h~ + h e + ha + ha). r~ 

i#~'#i" 
+ h 5 . r f  + h e . r~,,]) + 14 similar terms},  

(3.26) 
1 

R 3 = - ~  ~ {exp (2~i [ (h l+he+ha) . r~+(ha+hs) . r~  • 
~, ~,+~,, 

1 +he.r~,,])+59 similar terms},  (3.27) 

1 R~'= ~ ~ {exp (2~i[(h~+h2).r~+(h3+ha).r~ , 
~¢e7'#i" + (hs+h6).r~,,])+14 similar terms},  

(3.28) 

and R is a sum of various fourth-, fifth-, and sixth- 
order sums. Next, we introduce the substitutions 

h~ -+ k,  h 2 --> - k ,  h 3 --> h x + k ,  

h a --> - h l - k  , h 5 -> - h 3 ÷ k  , he -+ h 3 - k  , 

where the new hi, h2, h 3 satisfy 

(3-29) 
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into (3.21) and average over k. By imposing the con- 
dition tha t  no six position vectors be rationally 
dependent* it is easi ly seen tha t  

<R2>k = <R'2'>k = <Ra>k = <Ra>k = <R>k = 0.  (3.31) 

Furthermore,  it is readily verified tha t  

<RI> k = 1 /N  2 , (3.32) 

( R e ) k  = ~-~ ~ 3+  exp [2:rih~(rj-rj,) , (3.33) 
i41" = 

1 

<R3'>k -- -3 2d 1 + ~ exp [2:rih~. ( r j - r i , ) ]  
.N i#i'.f" ~=1 

1 
+ exp [2zd(hx. r j+he ,  ri ,+h3, rj,,)] 

+ exp [ -2z i (h l . r j+h2 . r~ ,+h3 . r j , , ) ]  / • (3.34) 

Next, substituting from (3.31)-(3"34) into (3-21) and 
employing (3.02)-(3.04) we obtain 

<lEkEhl+kEhl+h2+ki2>k 

3 4 N - 2  
= 1 - ~  +-~2 + ~  (IEh~le+]Ehe[e+lEh319) 

2 [Eh~Eh~Eh31 cos (~l+~e+~V3). (3"35) 

Evident ly  

(]Ehl+ha+kl - - l )>k  < ([Ekl 2 - 1  ) ([Ehl+k[ 2-1)  2 

: <lEkEhl.t_kEhl_t_he+k]2>k 

--<lEkEhl+k]2>k--<lEkEhl+h2+kl2>k 
2 - -<[Ehl+kEhl+he+kl  >k-t- 2 (3"36) 

where use has been made of (2.5). Substituting from 
(3.19) and (3.35) into (3.36) we find 

< (IEkl 2 - 1  ) (IEhl+k] 2 - 1  ) (]EhlThe+k[ 2 -1  )>k 

= 4 [ N  e -  (2/N2) ([Ehll e ÷ IEh21 e + IEhzl 2) 

+ (2/Na/e)IEhlEh2Eh3[ cos (~1+~e+~3),  (3.37) 

from which (2.2) is immediately deduced. 
By multiplying 

]EhlEh2Eh31 COS (91 -~-92 ÷ 93) 

1 
= ~-~2 ~ cos 2~z(hl .r ;+he.r j ,+ha.r j , , )  

2¢ / h~'J" 
and 1 

]En4EhsEhel cos (~4+~5+~e) 

1 
= -~T2 i,~Z,,~,, cos 2~(h a. r j+h6 ,  r j ,+h6,  rj,,), 

1 

employing the substitutions 

(3.38) 

(3.39) 

h l + h ~ + h  3 = 0 ,  (3-30) * As before this requirement may  be weakened somewhat. 
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hx-+k ,  h z - + k '  , h a ~ k "  , 

h 4 - +  h ~ - k ,  h~ --> h ~ - k ' ,  h 6 - ~  h a - k "  , 

where the new hx, h~., h a satisfy 

h a + h z + h  a = 0 ,  

and averaging over Ml k, k' ,  k"  subject to 

k + k ' + k "  = O, 
we obtain (2"3). 

(3.40) (~, + ~0~ + q~_~,+# } 

(3.41) q~ + ~ + ~ - ~  
q~# + ~ + q~_#+r 

(3.42) 

(3.43) q~# + q~r + q~-#-r 
~o~_# + ~o_~_ r + ~o#+ r 

(4.04) 

(4.05) 

4. Procedure for phase  determinat ion  

4.1. Initial determination of the phases 

In  a previous paper (Hauptman & Karle, 1956) it 
was shown that  the magnitudes of the structure factors 
determine the magnitudes of the structure invariants. 
Equation (2.2) shows how to find the magnitudes of 
all structure invariants of the type ~ + q~.+q~a, where 
h l + h ~ + h  a = 0, in terms of the known magnitudes of 
the structure factors. There remains the problem of 
extracting the values of the individual phases from 
the known magnitudes of these structure invariants. 
To this end it is necessary to fix the origin and to 
select one of the two enantiomorphous structures per- 
mitted by the given set of structure factor magnitudes. 
A program for doing this has already been described 
in our previous paper (Hauptman & Karle, 1956). 
We here carry out the details of this program. 

First, (2.2) is used to compute the magnitudes of 
all the structure invariants ~n~ + ~ + ~_~_n,. In prac- 
tice, those invariants for which the corresponding 
products IE,,~Eh~E_,,~_,,~I are large will be, in general, 
the ones most accurately determined. 

Next, a suitable primitive set h~, h#, h r is chosen, 
i.e. 

h~ k~ l~ 
h a k# l# = : £ 1 ,  (4.01) 

and each of levi , ]E#I , IErl must be quite large. We 
need to choose a primitive triple q~ ,  ~0~#, qh~ be- 
cause we shall want to specify the values of these 
phases arbitrarily in order to fix the origin uniquely 
(Hauptman & Karle, 1956). In order to determine 
whether this triple is suitable we proceed as follows. 
We examine 19 related structure invariants arranged 
in ten sets of four (some invariants appearing several 
times) :* 

+ ~ + 9~-~ 

9~+# + ~-~+r + 9-#- r  

9~+# + 9-~-r  + 9-#+r 

(4.02) 

(4.03) 

* A similar procedure involving identities has been suggested 
by Vaughan (1956). 

9~ + 9~ 

~s + 
~2~ + q~-~+# 

9~ + ~ + 
9o~ + ~_~+~ + 

9# + 9 #  + 
+ (p~ + 

93 + q~ + 
~2# +9-#+~ + 

~# + ~0# + 
~ + ~r + 
~ + ~  + 
~2# + ~-#+r + 

+ ~o, + 
+ ~  + 

q.o r + ~-~+~ + 

+ 9# + 
~ + ~  + 
~2~ + q~-~+# + 

+ ~oz 
+ ~ - #  
+ ~+#  
+ (p_~_# 

+ q~2~ 
+ q~_~ 

~ + r  

~#-~ 

¢P-#-~ 

¢P#-y 

~-#-r  

992P } 

~r+a 

q~r+#" 
qg_r_# 

(4.06) 

(4-07) 

(4.08) 

(4-09) 

(4.10) 

(4.11) 

where the abbreviations ~2~ = 92n~, q~+# = q~+h#, 
etc. have been used. In order for the primitive triple 
h~, h#, hr to be suitable, not only must lEvi , IEal , and 
lEvi be moderately large, but so must many of the 
]E]'s corresponding to the 9's appearing in the sets 
(4"02)-(4.11). Furthermore, at least one of these ten 
sets of four must be suitable for distinguishing the two 
enantiomorphous structures permitted by the given 
set of structure factor magnitudes. Ideally, this means 
tha t  in at least one set of four the magnitudes of three 
of the structure invariants should be approximately 
m the range 0.5-1.5 radians while the magnitude of 
the fourth should be approximately in the range 
2.0-2.6 radians and also about equal to the sum of the 
other three. In order to specify one of the two possible 
enahtiomorphs we specify arbitrarily the sign of the 
fourth and then choose the opposite sign for the 
remaining three. This is a consequence of the fact 
that  the ten sets (4.02)-(4.11) have been so constructed 
that  the sum of the four invariants in any set vanishes 
while any structure invariant has one sign for one 
enantiomorph and the opposite sign for the other. 
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The magnitude of any structure invariant is of course 
the same for both enantiomorphs (Hauptman & 
Karle, 1956). Less ideal sets are also permissible. For 
example the magnitudes of two of the structure in- 
variants in a set of four may be about ½~ radians 
while each of the two others may almost vanish 
(or both approximate ~). In either case the signs of 
the first two will be opposite and either of the two 
combinations of signs may be chosen in order to 
distinguish the enantiomorphs. As another example, 
the magnitudes of two of the structure invariants may 
be about ½z~ radians, a third may almost vanish, and 
the fourth may be about z~ radians. In this case the 
first two invariants will have the same sign (either 
both plus or both minus) and either sign may be 
chosen in order to distinguish the enantiomorphs. I t  
should be noted tha t  it is not possible (or significant) 
to assign a sign to an invariant the magnitude of 
which is ~r (or 0) since such an invariant has the same 
value for both enantiomorphs. The sign of an invariant 
which is close to 0 or ~r will be obtained automatically 
as a consequence of the refinement process to be 
described. 

Let us assume tha t  the primitive triple ~0~, ~0~, ~ is 
suitable in the sense just described and that  the first 
set (4.02) is suitable for distinguishing the enantio- 
morphs. Write 

q4,+~o~+q~_~_~ ~ b~o, 7~+q~r+q~_:, ~ b2o, [ 
(4.12) / q~+q~+q~+~ ~ b3 o, q~+~+q~-~+r+q~-~-~ ~-, bao, 

where the Ibio[, i = 1, 2, 3, 4 are initial values of the 
magnitudes of the structure invariants (4.02) obtained 
by using (2.2). Our first task is to determine the signs 
of the four numbers b~0. Let us assume an ideal 
situation (although a similar argument applies if the 
situation is less than ideal), so tha t  [bio[ is in the range 
0.5-1.5 radians for i = 1, 2, 3 while Ib4o ] is in the range 
2.0-2-6 radians. Furthermore Ibao I ~ !bl0l + Ib20l + [b3o[. 
We arbitrarily at tach a sign (either plus or minus) 
to bao, thus selecting one of the two permissible enantio- 
morphs. Once this is done then the values, not merely 
the magnitudes, of all the remaining structure in- 
variants are uniquely determined by the magnitudes 
of the structure factors. In order to determine the 
signs of blo, b~o, b30 for example, we observe that  the 
sum of the four invariants (4.12) must vanish, since 
~h = --qh. In short 

b lo+b2o+b3o+b4o  ~., 0 ,  (4.13) 

an equation which at this stage can be only approx- 
imately realized since the Ibio{'S, as obtained from (2.2), 
only approximate to the true values of the correspond- 
ing invariants. Nevertheless (4.13) enables us to fix 
the signs of b~o, b~ 0' b3o once the sign of ba0 has been 
specified. Assuming for example that  the set (4.12) 
is ideal and that  bao has been chosen to be positive, 
then bxo, b20, and b3o will all be negative. 

In practice, since (4-13) cannot be expected to be 

exactly fulfilled, an initial adjustment of the values 
of the bio, i = 1, 2, 3, 4, in order to satisfy (4.13) 
exactly, is called for. We have 

4 

bio = S ,  (4"14) 
i = 1  

where ~ is close to zero. We wish to add small incre- 
ments ei0 to the bio , such that  

4 

.~, (bio-{-Sio) = 0 ,  (4"15) 
i = 1  

in order to obtain improved values b~0 = bio+Sio to 
replace the initially computed values bio. Hence, 
subject to the equation of restraint (4.13), we seek 
to minimize 

4 

q5 = .,~ Wioe~o , (4"16) 
i = 1  

where Wio is a suitable weighting function. Taking wi0 
to be a reasonable function which ta~es into account 
the number of contributors to the determination of bi0, 
the size of the triple product of E 's  associated with bio , 
and the location of the value bio in the angle range, 
we find 

Wio = n~/2t V i i .  ]sin bio I (4.17) 
where 

]VII = [E~,E~E_~,_~[, I V~.] = [E~ErE~,_rl  , [ 
(4.18) 

[V3] = IE~E~,E~+.,], IV4] = [E~,+~E_~,+~,E_~_~,], 

and ni is the number of terms contributing to the cor- 
responding average in (2-2). The problem of minimizing 
(4.16) subject to (4.15) is readily solved in the usual 
way and leads to 

4 1 
eio = -- e/Wio • - -  , (4"19) 

i=1 WjO 

where s is defined by (4-14). Hence, revised values 
bi'o of bio are given by 

4 1 
b;o = b i o - e / W i o . ~ Y - - ,  i = l, 2, 3, 4 .  (4.20) 

j= 1 Wjo 

Since the values, as well as the magnitudes, of four 
invariants (or perhaps only three or two if the set 
(4-12) is somewhat less than ideal) are now available, 
we now proceed to the remaining nine sets (4-03)-(4-11) 
in whatever order proves to be expedient, making use 
of previously determined invariants to determine the 
signs of the remaining ones. We thus determine the 
signs of those of the 19 distinct invariants appearing 
in (4.02)-(4.11) which differ from 0 and z~. In addition 
to determining the signs of these invariants, improved 

t 
values bi0 are also obtained by means of the least 
squares adjustment just described. Since many of the 
invariants appear more than once in (4.02)-(4.11) we 
obtain several determinations for these invariants. 

Thus far we have been considering a specific group 
of ten sets of invariants generated by the primitive 
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origin determining triple. Similarly, there is associated 
with any linearly independent triple of phases (primi- 
tive or not) a corresponding group of ten sets. However, 
it is useful to restrict attention to linearly independent 
triples chosen from among the phases occurring in the 
initial set (4-02)-(4.11). As a result, many of the initial 
invariants recur in the newly formed sets thus facilitat- 
ing the determination of the signs of new invariants. 
Furthermore, since the invariants will reoccur so 
frequently, we are enabled to make a more accurate 
determination of their values. 

By taking a weighted average of these several 
determinations for a given invariant we obtain new 
values b~z instead of b~0 for the corresponding in- 
variants. At this stage any reasonable weight w~0 can 
be attached to the determination b[0 of the correspond- 
ing invariant. For example, we may take 

~,",o = (2~o+U,~0+W~o+~,~o)½ [ (4.2~) 
w/,.o = (W~o÷2W?;.o+W~o+W~o) ½ I 

etc. In this way we obtain 

b~, = XU,[ob;o/XW~o, (4.22) 

where the average (4.22) is taken over all determina- 
tions b~0 of a particular invariant. Furthermore, we 
can now attach a reasonable weight wi, to the deter- 
ruination bi, by means of 

w~t = (ZW~o) ~ , (4-23) 

t 

where the sum in (4.23) is taken over all those W,-o 
which appear in (4.22). In short, starting with crude 
values bi0 and corresponding weights W;o we have ob- 
tained, by means of a least-squares refinement and 
subsequent averaging, improved values b,~ and cor- 
responding weights wit for these invariants. This cycle 
of least-squares refinement and subsequent averaging 
may now be applied to the new values b,~ with cor- 
responding weights wit to obtain a third set of values 
b~., with corresponding weights u,,., for these invariants. 

Finally, among the nineteen distinct invariants 
(two invariants in which the indices of one are the 
negatives of the corresponding indices of the other 
are not counted as distinct) appearing in (4-02)-(4.11) 
only nine involve two of the primitive triple ~,, ~ ,  ~7 
(or their negatives). Specifying arbitrarily the values 
of the phases ~ ,  ~ ,  ~ (thus uniquely fixing the 
origin), these nine invariants lead to values of the nine 
additional phases ~.,±~, ~ + r ,  ~ + r ,  ~"~, ~ ,  ~"y" 

From this set of twelve phases any set of three 
linearly independent ones m a y  be chosen to replace 
the set ~ ,  ~ ,  q,  in the preceding discussion. As a 
consequence of having carried out the above proce- 
dure, we have already obtained the new group of ten 
sets of invariants corresponding to this triple of phases. 
Thus we have the values of nineteen invariants, some 
of which coincide with those in the first set of nineteen 
and the remainder of which are new. By repeating the 

procedure described when starting with the triple 
~0~, ~0~, ~r we obtain the values of nine more phases, 
some of which will coincide with ones previously 
determined. This process may be repeated indefinitely 
to yield the values of as many phases as desired. The 
fact tha t  any phase is ultimately accessible in this way 
is a consequence of the choice of the triple ~0~, ~0~, ~0y 
as primitive. In fact, any vector h is a linear combina- 
tion, with integer coefficients, of the primitive set 
h~, h~, h r (an immediate consequence of (4.01)). For 
example, among the second group of ten sets of four 
structure invariants, the set 

~+~+~_~+r+~0_~_~, ~ 0 _ ~ _ ~ + ~ + ~ + ~ ,  ~ (4.24) 
~ _ y  + ~ ÷ ~_~_~+y, ~+y + ~9_~_ 2~ + ~+~-~ ! 

may occur. The value of the first invariant of (4.24) 
has been previously determined while only the magni- 
tudes of the remaining three are k n o ~  from (2.2). 
However, as already described, the values of the latter 
three have also been determined, thus leading to the 
values of the new phases ~.~+~.~ and ~+~_~. I t  is easily 
seen that  by continuing in this way initial values of 
all the phases may be determined. I t  is to be noted 
that  at any stage sets of three suitable phases, leading 
to nineteen corresponding structure invariants, may 
be chosen in many ways. Hence the value of a par- 
ticular phase may be obtained several times, thus 
affording a check on the self-consistency of the proce- 
dure. In fact the value of a particular phase will be 
obtained by averaging all the different values obtained 
for tha t  phase. 

4.2. Second least-squares refinement 
We assume that  initial values of a large number of 

the phases have been determined and that  refined 
values b of the various structure invariants are known 
(as described in § 4.1). Our purpose in this section is 
to find improved values for the phases by means of a 
least-squares adjustment. I t  is important to note that  
the least-squares refinement to be described is valid 
also in the case that  the structure contains unequal 
atoms. We introduce the notation 

E = Eh ,  E~. = Ehi ,  E / =  E h j ,  (4.25) 

~i = q~hi, ~0j = ~0hj, (4"26) 

E# = E i E / ,  (4-27) 

~ = ~ i + ~ j ,  (4.28) 

and impose the condition 

h + h ~ + h  i = 0 .  (4.29) 

We seek an improved value for the phase ~0 of Eh, 
making use of initial values ~0~, ~0 i of those phases 
whose indices satisfy (4.29). We start  with 

IE#[ cos (~0+~o~+~0j) = cij, (4.30) 

IE,./] sin (~0+~0~+~0j) = s# ,  (4.31) 
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where 
ci; = IE#[ cos b ,  (4-32) 

s,:~ = IE~,I sin b ,  (4.33) 

and the b are the values of the respective structure 
invar iants  ~0 + ~0i+ ~ determined in § 4.1. Setting 

c = cos ~ ,  (4.34) 

s = sin ~0 , (4.35) 

we therefore need to minimize 

= ~ {[IE~I (c cos  q o # - s  sin ~#) - c i ; ]  z 
i, 

+ [IE~jl (c sin cf#+s cos q#)-s#]2},  

subject  to the condition 

(4"36) 

c2+s2-1 = 0 .  (4"37) 

Using Lagrange's  method of undetermined multipliers 
we are led to the solution 

where 

c = cos ~ = C/(C~+S~)½, (4.38) 

s = sin q = S/(C2+S~) "i , (4.39) 

C = ~ '  [E;i[(% cos ~/j+s,.j sin ~ ,3 ,  (4.40) 
i, / 

S = .~L'l Eo[( -c  0 sin ~ii+s# cos qgii) , (4"41) 
i , j  

and the sums in (4-40) and (4.41) are taken over all 
i, j satisfying (4-29). In  this way refined values for the 
phases m a y  be obtained, and the process m a y  be 
reiterated if necessary. 

5. I l l u s t r a t i v e  e x a m p l e  

In  order to i l lustrate the methods described in § 4-1, 
a structure consisting of ten identical point atoms was 
artificially constructed. The magni tudes  of 4630 E's  
and their  phases were then computed. This would 
correspond roughly to five or six t imes the number  of 
intensities contained within the copper sphere. The 
set h~, h~, hv was chosen from these 4630 E~'s to be 

1 

h 
410 

_ _  

225 
5i l  
~35 
101 
734 
9~1 
316 
215 
8~0 

4,4,10 
10,2,2 

h ~ = 4 ,  T, 0, h ~ = 2 , 2 , 5 ,  h r = 5 , 1 , 1 .  (5.1) 

I t  is readily verified tha t  the triple ~ ,  ~ ,  qv is 
primitive. The values of the nine associated triples 
h ,±hz ,  h~±hr,  h~±h r, 2h~, 2h~, 2h~ are readily found. 
The corresponding IE[ and ~ values are listed in col- 
umns  2 and 3 of Table 2. From these values of the 
phases the true values of the nineteen structure in- 
var iants  associated with the given pr imit ive  triple 
~ ,  ~ ,  ~r were computed. These are shown in column 
16 of Table 1. The invar iants  are labeled by column 1, 
where e.g. invar iant  1 is obtained from invar ian t  1 
by  reversing the signs of all the indices. Two such 
invar iants  are the negatives of each other and there- 
fore not essentially distinct. Since we have listed all 
ten sets of four invar iants  each, many  of the invar iants  
occur several t imes in Table 1. 

Columns 2, 3, 4 of Table 1 list the indices of the 
sets of invar iants  (4.02) to (4-11). Column 6 lists the 
values of cos bio obtained from (2.2). The magni tudes  
of the corresponding bi0 were then obtained and listed 
in column 7. There remained the problem of specifying 
their  signs. W e  note tha t  the cosines of invar iants  8 
and 10 slightly exceed unity,  and the values of these 
invariants  were set equal to zero. Each of the ten sets 
of four invariants  is labeled by n4eans of column 8 
which indicates also the order in which each set was 
examined.  The set labeled 1 in column 8 was con- 
sidered to be ideal as seen from the magni tudes  of 
these invar iants  and 

2-628 ~ 0.566+ 1.314+0.746.  

Also the values of the corresponding products 
]Ei~E~.,.E~31 for this set were fair ly large. The sign of 
invar iant  16 was chosen to be plus in agreement with 
the known sign (+2.392) for this invar iant  obtained 
from column 16. In  this way we select tha t  one of the 
two enant iomorphs permit ted  by the structure factor 
magni tudes which coincides with the given structure, 
in order tha t  comparison between computed and true 
phases m a y  later be made. We conclude tha t  the signs 
of the remaining three invar iants  14, 6, and 3 in set 1 
must  be minus. No other combinat ion of signs is even 
approximately  consistent with the requirement  (4-13). 

2.21 + 0 . 1 2 3  + 0 . 1 2 3  + 0 . 1 2 3  + 0 . 1 2 3  0-000 0.000 0-000 
2.12 - 0 . 2 4 8  - 0 . 2 4 8  - 0 . 2 4 s  - 0 . 2 4 8  0.000 0.000 0.000 
1.26 + 1.387 + 1-387 + 1.387 + 1.387 0.000 0.000 0-000 
0.71 - -0-001 - -0 -298  - -0 -236  - -0 .205  0.297 0.235 0.204 
0.90 + 2 . 3 6 2  -1-2.368 + 2 - 3 7 9  + 2 . 3 8 0  0-006 0-017 0-018 
1-62 -t-0-454 + 0 . 3 9 3  + 0 . 4 1 4  + 0 - 4 1 8  0-061 0.040 0.036 
1.76 +0 .874  +0 .8~6  +0 .862  +0 .866  0.018 0.012 0.008 
1-24 + 2-872 + 2-949 + 2.947 + 2.944 0-077 0-075 0-072 
1.88 -~ 0-463 + 0.371 + 0.440 -1- 0.443 0.092 0-023 0.020 
1-20 --  0.686 --  0" 779 --  0" 768 --  0" 751 0"093 0-082 0.065 
0" 77 - -  0.026 + 0.070 + 0.070 + 0" 114 0"096 0-096 0" 140 
2"37 - -  2.625 - -  2.487 - -  2.517 - -  2"527 0" 138 0" 108 0"098 

Table 2. The values of the phases in radians computed from the invariants af Table l, 
showing successive refinements 

2 3 4 5 6 7 8 
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(We may note at  this stage tha t  this assignment of 
signs is also consistent with the known signs as shown 
in column 16. I t  is to be emphasized however that  no 
use of this information was made in determining these 
signs.) 

Next, we proceed to the set labeled 2 in column 8. 
Since invariant 3 is known to be minus (from set 1) 
we conclude tha t  invariants 2 and 4 are minus and 
plus respectively (in order to fulfil (4.13)). At this 
stage it also appears likely that  invariant 1 is negative 
but  we delay this decision since the evidence is not 
yet  conclusive. 

Proceeding to the third set we make use of the 
known sign of invariant 6 to infer that  invariants 5 
and 7 are minus and plus respectively. Again invariant 
1 appears to be negative, but the evidence is still in- 
conclusive. 

In the fourth stage the known signs for invariants 
2 and 6 yield the negative sign for invariant 9. Due 
to the small magnitude of this invariant this assign- 
ment  might have turned out to be wrong, an error 
which the subsequent least-squares adjustment would 
presumably have corrected. In a more complete 
analysis, involving the examination perhaps of hun- 
dreds of sets, this invariant would occur many times 
and its sign could be specified with greater certainty. 
Here the invariant occurs only once and the decision 
concerning its sign had to be made at this stage 
although the evidence is hardly conclusive. 

Proceeding to the sixth set we employ the known 
signs of invariants 2 and 5 to deduce the signs of 
invariants 11 and 13. Again, using the known in- 
variants 11 and 12, we finally determine unam- 
biguously the sign of invariant i to be positive in set 7. 
This is in agreement with the slight indications in 
sets 2 and 3 that  invariant 1 was negative. The signs 
of the remaining invariants 15, 17, 18, and 19 in sets 
8, 9, and 10 are now readily determined in the same 
way. We note that  in set 8 the criterion for minimum 
e is not fulfilled owing to the fact that  the signs of in- 
variants 14 and 1 had already been determined. The 
combination of signs obtained for this set yielded 
e = +0.544 whereas the minimum that  could be ob- 
tained is ~ = -0.282.  We observe that  set 5 was not 
useful in determining the signs of any invariants, but 
served merely to confirm the previously obtained signs 
for invariants 5 and 3. 

Next, (4.17) was used to compute the weights wi0 
listed in column 9. By means of (4.19) and (4.20) the 
eio and bio listed in columns 10 and 11 were computed. 
Finally (4-21) was used to compute the weights w~0 
(column 12) which are needed in (4.22) to compute 
the bil listed in column 13. The weights wil associated 
with the improved values bil of the invariants were 
obtained from (4-23). Finally the results of a second 
cycle of refinement are shown in column 15 which 
may be compared with the true values as shown in 
column 16. 

From columns 7, 13, and 15 of Table 1, the values 

of the bio, bil and bi2 respectively, we readily computed 
the values of the phases ~o, ~1, and ~ corresponding 
to the successive least-squares refinement as described 
in § 4. These are listed in columns 4, 5, and 6 of Table 2, 
in which it is to be noted that  the first three phases 
are arbitrarily assigned their true values as computed 
from the structure. This assignment is permissible 
since we thereby uniquely specify the origin to agree 
with that  selected in the original structure, and is 
made in order to facilitate comparison between the 
computed and true values of the remaining nine phases 
listed in Table 2. The successive improvements in the 
computed values of the phases resulting from the 
least-squares refinement is apparent from inspection 
of the deviations listed in columns 7, 8, and 9 of 
Table 2. The weighted average deviations (excluding 
the initial primitive triple) are 0.091, 0.067, and 0.063 
radians respectively. 

6. Concluding r e m a r k s  

I t  is in order to compare the ideal example described 
in § 5 with the experimental situation. Clearly the 
accuracy of the calculated phases in the illustrative 
example is improved as a consequence of using exact 
data, whereas in practice a certain amount of error 
in the [EJ values is unavoidable. The experimental 
situation is, however, improved as a consequence of 
the initial least-squares adjustment of the bio'S , 
especially since in practice many sets of invariants 
would be employed rather than the ten sets used in 
the illustrative example. In practice many hundreds 
of invariants would be available for examination, and 
it is therefore to be expected tha t  a more suitable 
primitive triple for fixing the origin would be available 
than the one actually chosen in our example. Finally, 
owing to the fact that  the precision with which (2.2) 
can be computed is approximately proportional to the 
square-root of the number of data, it is possible to 
estimate roughly the effect of using fewer data. 

Our formulas have exact validity provided that  the 
structure consist of 2/ ident ical  point atoms and that  
no six position vectors be rationally dependent. Even 
if these requirements are only approximately fulfilled 
it is clear that  these formulas have approximate 
validity and are useful for determining phases. Since 
both least-square procedures here described are valid 
whether or not these conditions are fulfilled, the phases 
finally determined are not likely to be much affected 
if the above assumed conditions do not hold rigorously. 

Our formulas imply that  a structure in P1 consisting 
of N identical point atoms is uniquely determined 
(except for its enantiomorph) by the magnitudes of 
its structure factors, provided that  no six position 
vectors are rationally dependent. In short we have 
proven the following: 

TH~.OREM. A P1 structure consisting of N identical 
point atoms (where A r _> 6) and such tha t  no Six 
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position vectors are rationally dependent, has precisely 
one homometric mate, its enantiomorph. 

We wish to express our appreciation to Mr Peter 
O'Hara of the National Bureau of Standards for 
performing the calculations contained in this paper. 
He has programmed the calculation of equation (2.2) 
for the digital computer, SEAC, thus making a high- 
speed computer available for the computation of 
phases. 
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A Neutron-Diffraction Study of Potassium Hydro~,en Bis-Phenylacetate 
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Fourier projections derived from single-crystal intensity data  give the positions and thermal  vibra- 
tions of all the atoms in the structure. The mean  length of the C-H bonds to the benzene ring is 
1.13 A. The acidic hydrogen a tom at the centre of symmet ry  shows no measurable anisotropy but  it 
is very diffuse, with  a r.m.s, ampli tude of displacement of 0.29 A. 

Introduction 

In two earlier papers (Bacon & Curry, 1956a, b) we 
have shown how neutron-diffraction data can supple- 
ment existing knowledge of the molecular structure 
derived using X-rays in the cases of sodium sesqui- 
carbonate and a-resorcinol. In each instance the 
supplementary information depended on the detection 
of hydrogen atoms. In the former substance we were 
able to provide detailed information about the hy- 
drogen bond across a symmetry centre, which links 
two carbonate groups, and also about the hydrogen 
atoms within the molecules of water of crystalliza- 
tion; in resorcinol we were able to show detail both 
for the intermoleeular hydrogen bonds and for the 
C-H bonds to the benzene ring. The present study is 
a natural sequel to these two earlier ones. Potassium 
hydrogen bis-phenylacetate, (C6HsCH2COO)2KH, is an 
acid salt of phenylacetic acid and its structure was 
studied, using X-ray diffraction methods, by Speak- 
man (1949). This X-ray work showed that phenyl- 
acetate residues in the structure were related by a 
centre of symmetry in such a way that the 0 - 0  dis- 
tance between their carboxyl groups was 2.55 A, 
suggesting a short hydrogen bond in which the hy- 
drogen atom was either centrally located at the centre 
of symmetry or statistically distributed between two 
possible positions, one on each side of the centre. 
These two possible structures may usefully be con- 
sidered in relation to the structure of KHF 2, of which 
(C6HsCH~C00)~KH might be regarded as an aromatic 

analogue, where there is a very short F - H - F  bond, 
of length only 2.26 A, and a variety of physical 
evidence that  the hydrogen atom is indeed centrally 
located (Peterson & Levy, 1952). 

Experimental  details 

Potassium hydrogen bis-phenylacetate has monoclinie 
symmetry with space group C2/c and 

a = 2 8 . 4 ,  b =4.50,  c =  11-97/~, f l =  90.4 ° . 

I t  was prepared as described by Speakman and 
recrystallized from ethyl alcohol, from which it 
develops as laths elongated along the b axis. This 
habit is of the desired type, since the aim of the 
experimental work is to produce a projection on the 
(010) plane of the neutron-scattering density, but it 
was found very difficult to grow crystals sufficiently 
large to give adequately intense diffracted beams. As 
a very exceptional occurrence, a crystal measuring 
3.7 × 0.7 × 0"3 cm. was produced and from this was cut 
a very suitable crystal of dimensions 3.7 × 0.3 × 0-3 cm., 
which was used for most of the work, together with 
two smaller specimens. The crystal was mounted with 
the b axis vertical, and 118 (hO1) reflexions were mea- 
sured using a monochromatic neutron beam of wave- 
length 1.09/k. About 100 of these reflexions were first 
measured with the small simple spectrometer designed 
for single-crystal work and described by Bacon & Dyer 
(1955). Subsequent checks of the intensities were car- 


